MARUBENI ITOCHU STEEL | Marubeni-Itochu Tubulars Oceania (MITO)

"CRAs, an ally for Carbon Capture and Storage (CCS)."

With host Christian Tedaldi

Marubeni-Itochu Tubulars Oceania (MITO)

Marubeni-Itochu Tubulars Oceania (MITO)

Marubeni-Itochu Tubulars Oceania

Dedicated to delivering customer solutions across resource and energy industries in Australia and New Zealand

tube**stream**®

Our Product Offer

OCTG

Casing Accessories

Linepipe and Fittings

Sucker Rod

INSIGHTS ■

Introducing our Guest Speaker

Vikram Pandit Regional Sales Director & Managing Director

TUBACEX IS A GLOBAL INDUSTRIAL ADVANCED PRODUCT & SERVICE PARTNER

FULLY INTEGRATED SUPPLIER OF ADVANCED INDUSTRIAL PRODUCTS AND SERVICES

HIGH PRECISION MACHINED COMPONENTS

R	22
Q	Ø

PERSONALIZED HIGH VALUE SERVICES

SALEM TUBE TSS PA TUBACEX DURANT NTS AMEGA USA I MATS HOUSTON TUBACEX SERVICES TSS CENTRAL WAREHOUSE MTS AMEGA GUYANA TSS MIDDLE EAST Im NTS AMEGA SINGAPORE 42% Asia TBX UPSTREAM TSS BRASIL 2023E Sales: ≈ €900M

> **TUBÂCEX** GROUE

4% Africa

21% Europe

B MI INSIGHTS

BU STEEL & EXTRUSION // 5

NTS AMEGA CANADA

1. Challenges in CCS

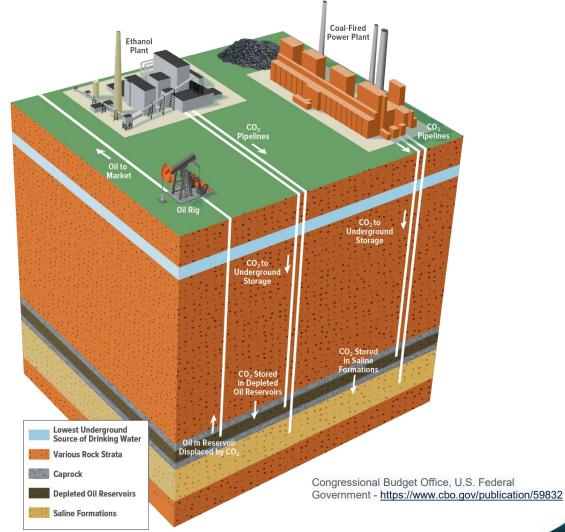
2. Material Selection for CCS / CCUS

3. Materials Definitions and Characteristics

4. Process Technology

MI INSIGHTS

Challenges in CCS Corrosion



Considerations for CCS Corrosion

2. How is it injected?

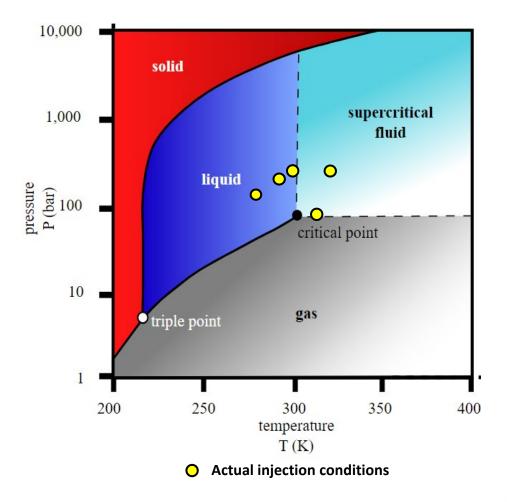
Considerations for CCS Corrosion

1. CO2 Source

Impurities could be a cause of corrosion

- NOx, SOx, O2 (power plant/cement plant)
- H2S (oil & gas)
- H2 (precombustion at power plant)

2. Injection condition


Phase change could cause

- Joule Thomson effect
- Change of corrosion gas pressure

3. Reservoir

Reservoir environment have below concerns;

- Low pressure: phase change
- High pressure: Back flow when Shut-In
- Impurities of formation water: corrosion

The Significant Cost of Corrosion

NACE International (AMPP) released the

"International Measures of Prevention, Application and Economics of Corrosion Technology (IMPACT)" study,

Estimates the global cost of corrosion to be:

2.5 Trillion USD

A two-year global study released at the CORROSION 2016 conference study found that implementing corrosion prevention best practices could result in global savings of between –

15-35 percent of the cost of damage, \$375-875 billion (USD)

Corrosion Evaluation

Main Causes

- ✓ Water
- ✓ Carbon dioxide (CO₂)
- ✓ Hydrogen sulfide (H₂S)
- ✓ Microbiological activity

Factors

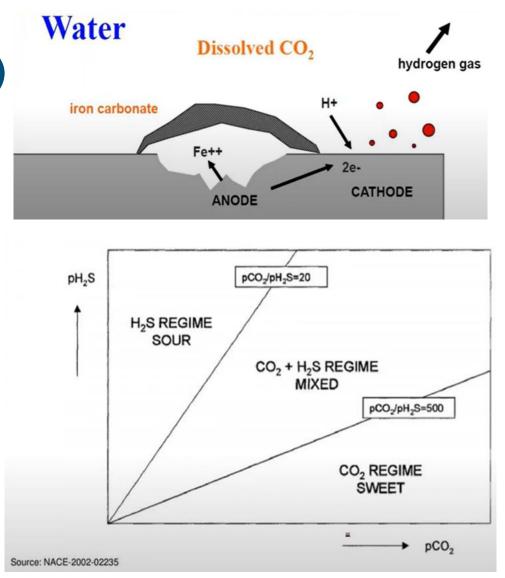
- ✓ Temperature
- ✓ Chloride ion (Cl⁻) concentration
- ✓ Partial pressure CO_2
- ✓ Partial pressure H_2S
- 🗸 рН
- ✓ Presence or absence of sulfur

CORROSION TYPES

- ✓ Sweet corrosion
- \checkmark Sour corrosion \rightarrow SSC, SOC
 - ✓ Pitting corrosion
 - \checkmark Crevice corrosion
 - Erosion corrosion
- ✓ Microbiologically induced corrosion

MI INSIGHTS

📲 MI INSIGHTS


Corrosion Evaluation: Sweet Corrosion (CO₂ corrosion)

□ Fundamentals: Sweet corrosion occurs when CO₂ dissolves in water to form carbonic acid H₂CO₃. The acid may lower the pH by promoting general corrosion and pitting corrosion in the steel.

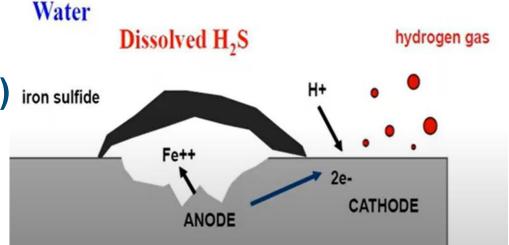
✓ The corrosion product is iron carbonate FeCO₃ or siderite

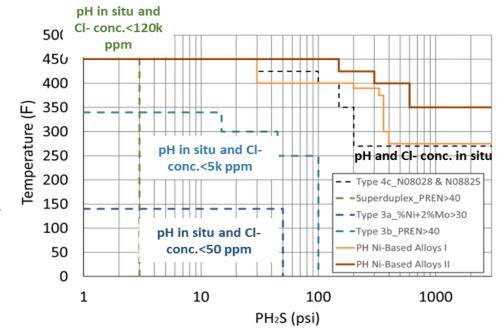
✓ Increasing partial pressure of CO_2 the decrease of pH may accelerate the corrosion rate.

✓ Oxygen should be limited (usually <10 ppb)

📲 MI INSIGHTS

Corrosion Evaluation: Sour Corrosion (H₂S corrosion) iron sulfide


□ **Fundamentals:** Sour corrosion occurs when *H*₂S dissolves in water and it can cause material failure at stress levels less than their normal yield strength.


✓ The corrosion product is iron sulfide FeS.

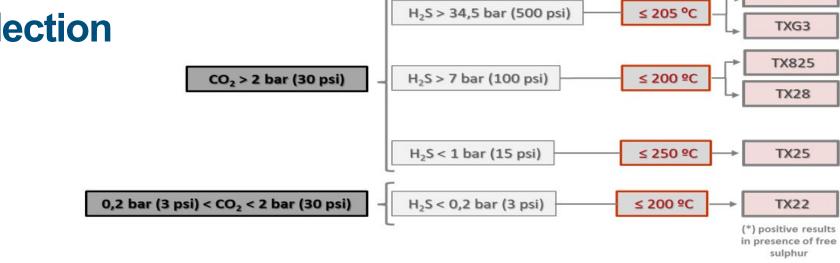
✓ Hydrogen permeation increases with increasing partial pressure of H_2S . Lower pH increases the susceptibility to corrosion

✓ Standard ISO 15156-3:

Petroleum and natural gas industries — Materials for use in H₂Scontaining environments in oil and gas production —

Material Selection

Material Selection Example


Specimen Type	Applied Stress	Liquid Phase	Gaseous Phase	Temperature (°F)	Duration (days)
FPB	100% AYS	1.648 g/L NaCl 0.41 g/L CH₃COONa	H ₃ COONa H – 2.9 H – 2.9 TP = 2951 psi	194 ± 5	30
Crevice Coupons		In-situ pH – 2.9 w. CH₃COOH			

🔊 MI INSIGHTS

TXG50(*)

Corrosion Evaluation: Material Selection

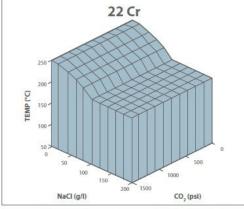


Figure 5 The corrosion resistance of 22Cr duplex stainless steel in CO₂/NaCl environments in the absence of oxygen and H₂S. Corrosion rates of \leq 0.05 mm/yr (2 mpy) and no SSC or SCC.

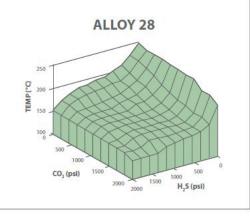


Figure 6 The corrosion resistance of Alloy 28 in H_2S/CO_2 environments in the absence of elemental sulphur. Corrosion rates of ≤ 0.05 mm/yr (2 mpy) and no SSC or SCC.

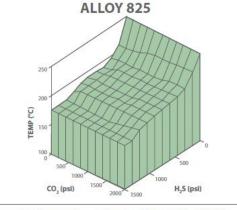
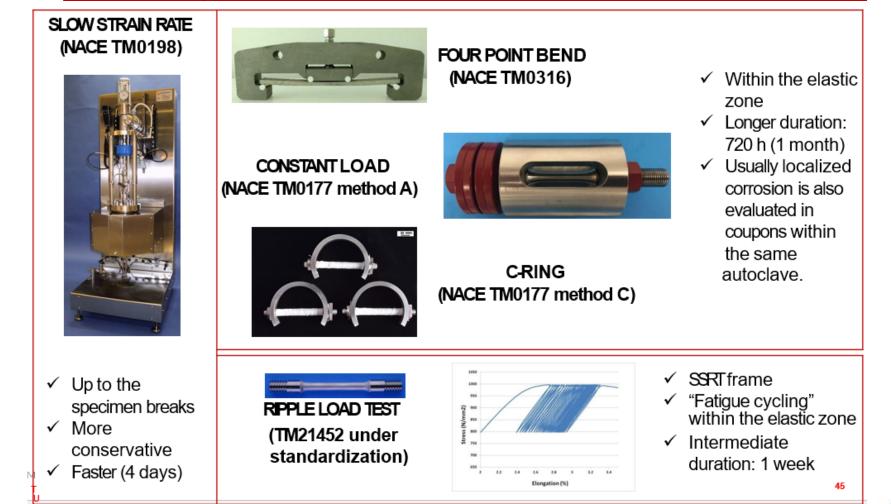



Figure 7 The corrosion resistance of Alloy 825 in H_2S/CO_2 environments in the absence of elemental sulphur. Corrosion rates of ≤ 0.05 mm/yr (2 mpy) and no SSC or SCC.

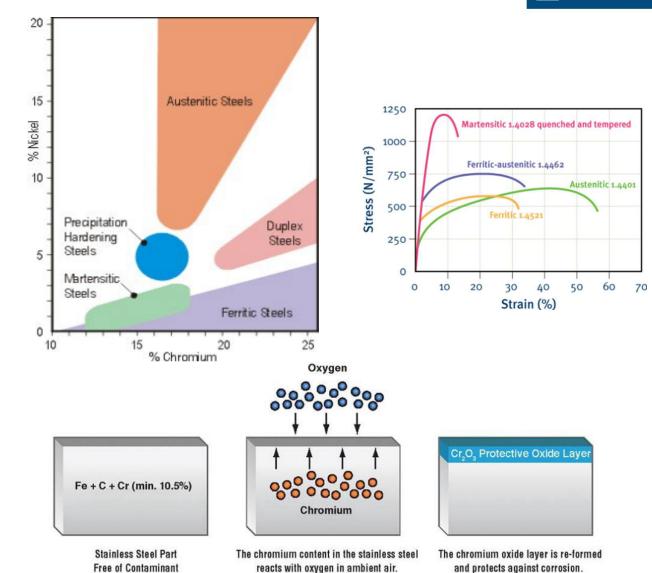
Corrosion Evaluation: Types of Testing

Stress/strain application on the material immerse in the corrosive environment

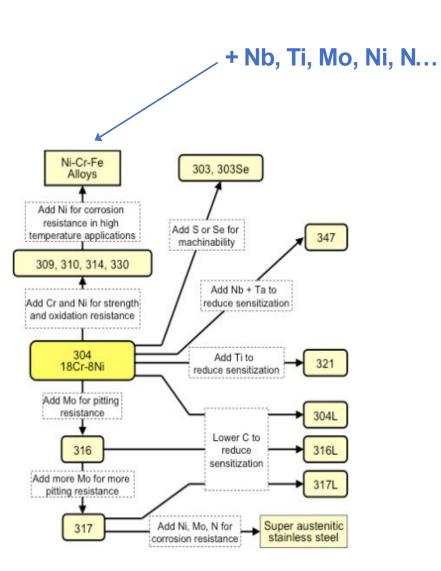
MARUBENI ITOCHU STEEL

Test Results- TX25

No corrosion observed after 30 days of testing


Materials Definitions and Characteristics

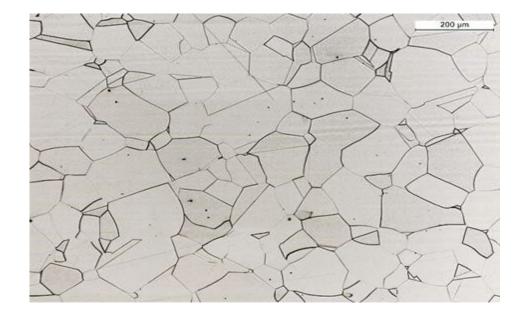
B MI INSIGHTS


Materials Definition: Stainless Steels

- ~ 11% Cr minimum
- Thin and adherent protective oxide layer
- Cr₂0₃ (+Al, Si, Mo, REM...个 protection)
- 5 stainless steel families:
 - Austenitic stainless steels
 - Ferritic stainless steels
 - Martensitic stainless steels
 - Duplex stainless steels
 - Precipitation hardening stainless steels

Materials Definition: Austenitic Stainless Steels

- Fe-Cr-Ni grades AISI 300: based on 304
- Fe-Cr-Mn-Ni grades AISI 200: Mn replaces Ni, N addition: ↑strength ↓corrosion resistance
- Highly alloyed Fe-Ni-Cr grades: Ni~30% (Alloy 800, Alloy 20...): ↑corrosion resistance @ high temperature
- Superaustenitic grades: Mo, Ni, Cr, N additions (6Mo, 904L...): ↑corrosion resistance



MI INSIGHTS

A MI INSIGHTS

Main Characteristics: Austenitic Stainless Steels

- Non-magnetic
- Very good formability
- Very good weldability
- High toughness and ductility down to absolute zero
- High strength can be achieved by cold-working
- Very good creep resistance
- Very good corrosion resistance
 in many environments
- Susceptible to chloride-induced stress corrosion cracking
- Susceptible to thermal fatigue

MICROSTRUCTURE:

- Grain size according to ASTM E112
- Precipitation: carbides, sigma...

B MI INSIGHTS

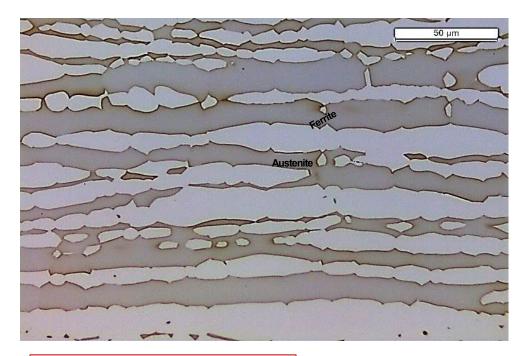
MARUBEN ITOCHU STEEL

Materials Definition: Duplex Stainless Steels

- Duplex grades: 22% Cr, 4.5-6.5% Ni, 2.5-3.5% Mo, 0.1-0.2 N, PREN<u>></u>35
- Superduplex grades: 25% Cr, 6-8% Ni, 3-5% Mo, 0.2-0.3 N, 0-1% W, PREN>40, ↑strength, ↑corrosion resistance
- Hyperduplex grades: ↑ %Cr, ↑ %Ni, ↑ %Mo, %N, PREN>45:
- ↑↑strength,↑↑corrosionResistance
- Lean duplex grades: ↓ %Ni, ↓ %Mo, PREN<30:
- High strength with↓corrosion resistance and ↓price

1.4362 /	Standard grade (22% Cr)				
S32304	1 4462 /	Highly alloyed grades (25% Cr)			
PREN = 24	1.4462 / S32205 PREN = 32-36	1.4507 / S32550 PREN < 40	Super-duplex 1.4410 / S32750 PREN = 40-45	Hyper-duple 1.4658 / S32707 PREN > 45	

PREN = %Cr+3.3 x %Mo + 16 x %N


 $PREW = \%Cr + 3.3 \times (\%Mo + 0.5 \times \%W) + 16 \times \%N$

Pitting Resistance Equivalent Number: predictive measurement to localized pitting corrosion resistance based on the chemical composition

Materials Characteristics: Duplex Stainless Steels

- Ferro-magnetic
- Good formability
- High strength
- Good toughness
- They can be hardened by cold working
- High resistance to pitting and crevice corrosion
- High resistance to chloride-induced stress corrosion cracking
- Reasonable weldability
- Very limited use at high temperatures:
 - ✓ 475°Cembrittlement(spinodal decomposition of ferrite phase in the temperature range ~ 280-500°C)
 - ✓ intermetallic phases embrittlement in the temperature range ~ 600-900°C

MICROSTRUCTURE:

- Ferrite/austenite balance (aprox. 50%/50%)
- Precipitation: sigma, chi,nitrides, carbides...

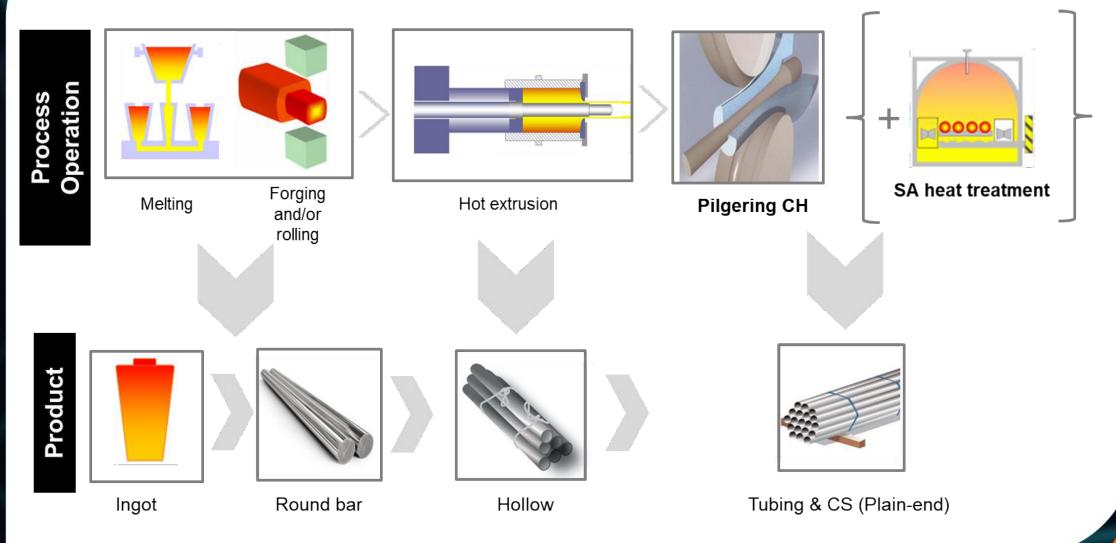
Materials Characteristics: Solid solution Nickel-based alloys

MAIN CHARACTERISTICS:

- Excellent resistance to high temperature corrosion in many environments
- They also form a thin and adherent protective oxide layer
- High strength over a wide range of temperatures.
- Nickel-based alloys can be used to approximately 0.75 times their melting point.

MICROSTRUCTURE:

- Grain size according to ASTM E112
- Precipitation: carbides, sigma...



Process Technology

Production process, Route up to 7 5/8"

How to get the best outcome for your CCS Project...

How to get the best outcome for your CCS Project

- Work with experts with deep technical knowledge to understand your requirements from the beginning
- Support throughout the FEED and FID stages
- Material selection is key- CRA is your CCS Ally
- Local technical and commercial support throughout the project

Thank You Q&A

