

Welcome to MI Insights

With host Christian Tedaldi

Marubeni-ItochuTubulars Oceania (MITO)

Marubeni-Itochu Tubulars Oceania (MITO)

Dedicated to delivering customer solutions across resource and energy industries in Australia and New Zealand

tube**stream**[®] pipe**sales**

Our Product Offer

OCTG

Casing Accessories

Linepipe and Fittings

Sucker Rod

Marubeni-Itochu Tubulars Oceania (MITO)

Introducing our Guest Speaker

Nick Kastelein Lead Mechanical Engineer

"Detailing a design dilemma – Managing the effect of hydrogen on pipeline steels"

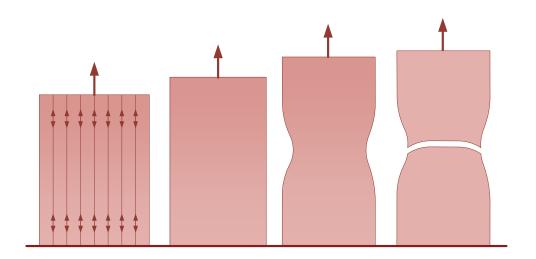
Detailing a design dilemma

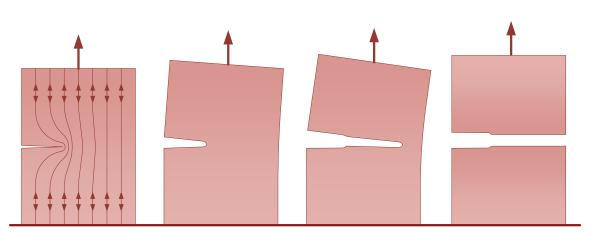
Managing the effect of hydrogen on pipeline steels

Consult Engineer Deliver Realised

Changes to carbon steel properties
 Impact on pipeline performance
 Potential design remedies
 Role/need for further research

Consult | Ideas Engineer | Deliver | Realised


Changes to carbon steel properties...



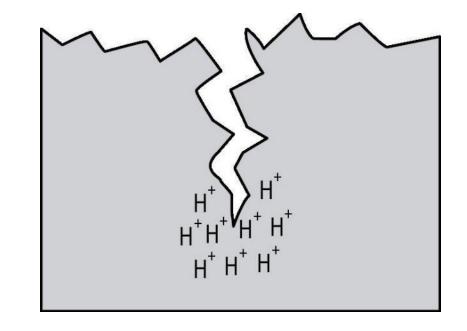
Hydrogen affects carbon-steel

A reduction in material resistance to **cracking**.

Strength Failure due to stress in a material.

Toughness Failure where there is a **crack**.

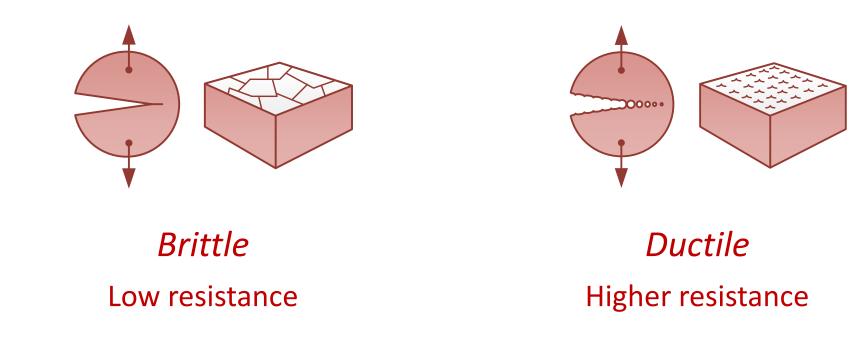
Detailing a design dilemma



Carbon-steel properties are altered

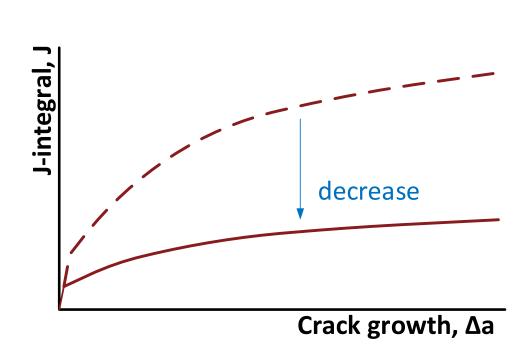
Three effects to discuss:

- 1. Toughness reduction
- 2. Fatigue crack growth acceleration
- 3. Ductility reduction


The change is not permanent after the hydrogen source is removed.

Traditional brittle vs. ductile fracture

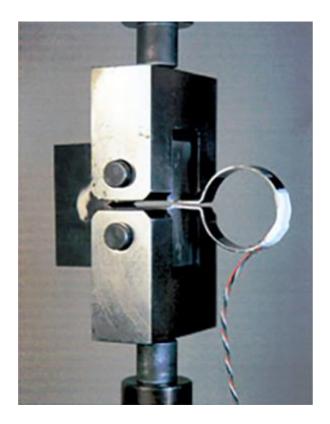
Resistance to fracture depends on the mechanism at the crack tip:


Detailing a design dilemma

Unstable fracture:

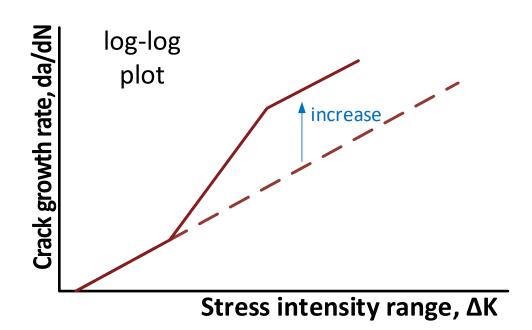
Consult Engineer Deliver

Toughness reduction – hydrogen embrittlement



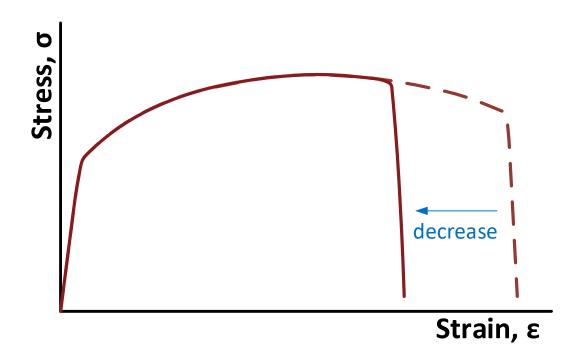
- > Resistance increases as the crack grows
- > Variables that matter:
 - > Hydrogen partial-pressure
 - > Strain rate
 - > Steel hardness / UTS
 - > Microstructure
- Repeatability?
 Hydrogen the "equalizer"
- > Measurement is difficult!

Measuring toughness in hydrogen


- Traditional: Charpy test.
 No good in hydrogen!
- > ASME B31.12 required (for Option 2) ASTM 1681
 > Questionable relevance due to methodology.
 - > Low threshold (55 MPa(m)^{0.5})
- > FFCRC Code of Practice recommended ASTM 1820
 - Difficult test to conduct
 - Complexity for interpretation

Hydrogen-assisted fatigue crack growth (HA-FCG)

Fatigue crack growth:

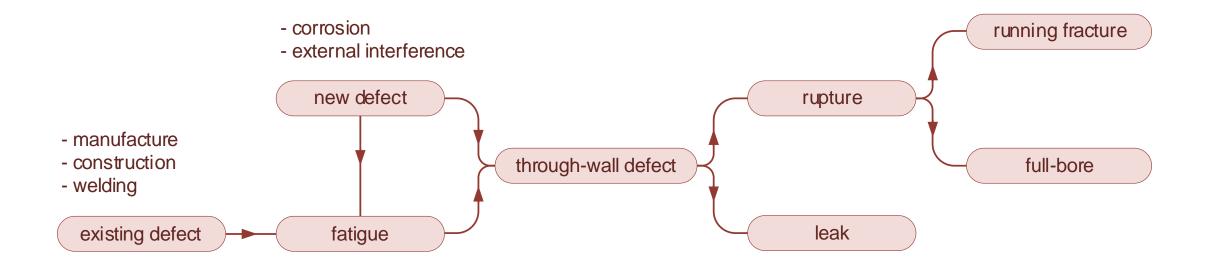

Elements:

- > Formation of new cracks at a surface.
- > Growth of existing cracks.
 - > Fatigue acceleration, called HA-FCG
 - > Experimentally repeatable \checkmark
 - > Prominent model: ASME CC220
- > Variables that matter:
 - › Hydrogen partial-pressure (minor)
 - > Cycling ratio / mean stress

Loss of ductility

Ductility reduction

 Above the ultimate tensile stress, failure in hydrogen occurs at a lower total strain.


Consult Engineer Deliver Realised

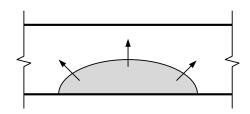
Impact on pipeline performance...

Fractures dominate failure

Traditional pipeline designs *rely* on toughness in several scenarios...

Part-Through-Wall defects

ITOCHU

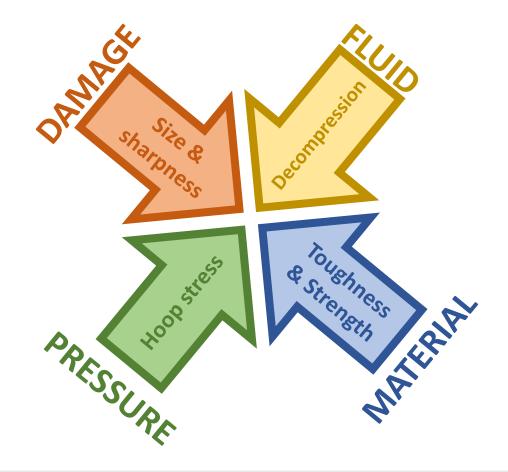

STEEL

GPA

...when a shallow crack breaks and becomes a leak.

- H₂: Critical depth is reduced!
- > for *sharp* defects only (cracks)
 > toughness reduces *after* hydrotest, hence no longer a "proof test"

(Blunt defects can *become* sharp defects due to fatigue)



Through-Wall defects

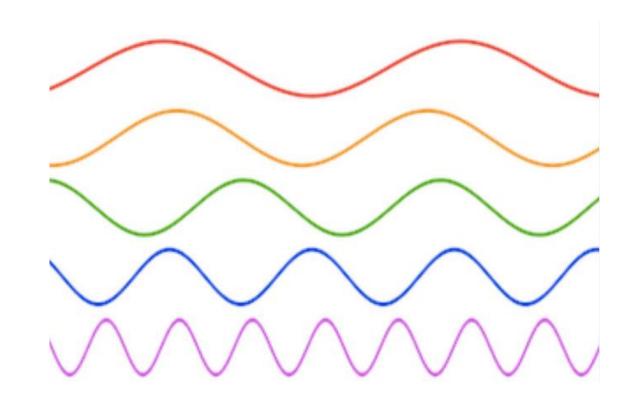
...when a through-wall defect (leak) bursts, becoming a rupture.

H₂: Critical defect length is reduced!

- Critical for determination of consequence and risk
- > High stain rate may alleviate some concern

Fatigue

GPA

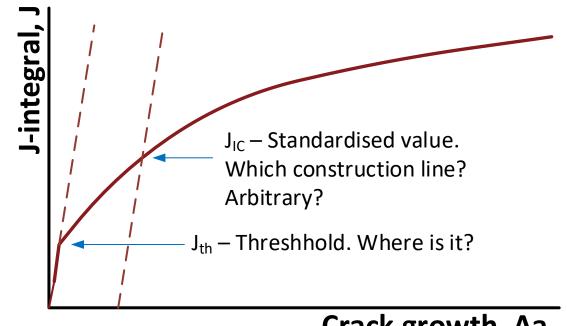

ARUBENI

ITOCHU

STEEL

...when cyclic loading grows cracks to failure.

- H₂: Fatigue life is reduced!
- > Increased crack growth rate> Decreased final crack depth

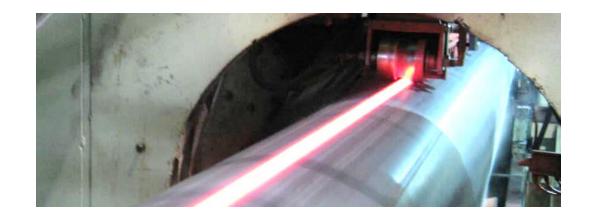


Fatigue life also depends on toughness

Termination of fatigue growth

 The toughness that should be used to terminate fatigue analysis is contested and has a *big* impact on results.

Crack growth, Δa


Defects in welds

H₂: Welds are affected similarly to parent material, but

Welds have additional concerns :

Relevant factors:

- > Range of potential defects
- Stress concentration due to geometric tolerances
- > Residual stress

Probably less relevant:

- Lower initial toughness material prior to embrittlement
- > High hardness regions

Undermatched welds

RUBENI

ITOCHU

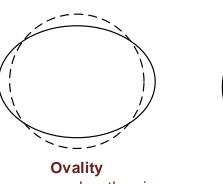
STEEL

GPA

...when a weld has less net strength than the parent pipe.

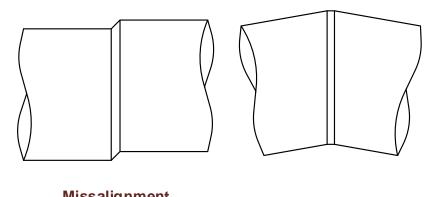
Girth weld matching...

- You may think of matching as a strength issue.
- > Where weld defects apply, matching is a toughness issue.
- > H₂: Reduces weld toughness.



Dimensional tolerances

Pipeline dimensional discontinuities amplify stress.


Missalignment Tension on the convex geometry

Pressure makes the pipe circular

Seam weld

Peaking Pressure bends the weld

Missalignment Tension on the convex geometry

Ang. Missalignment Bending at the joint

Girth weld

Detailing a design dilemma

Running fracture

ITOCHU

STEEL

GPA

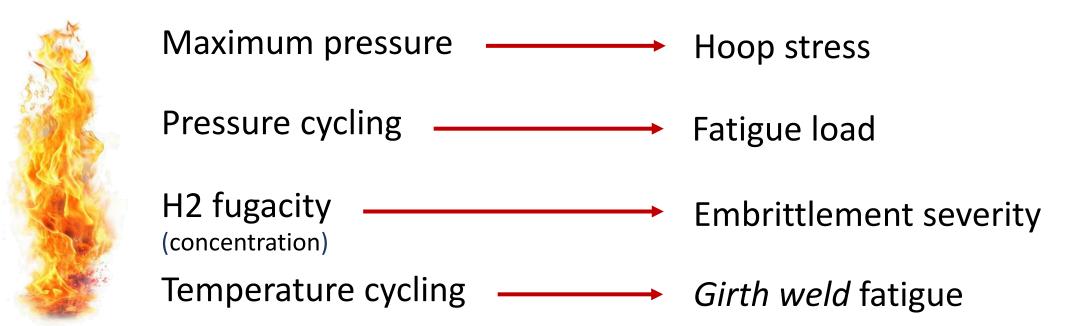
ARUBENI

...when a ruptured pipeline *"unzips"*.

- Due to high strain rate, unlikely significant impact on fracture speed (cautious consensus)
- Pure hydrogen accelerates decompression
- In blends, decompression may increase or decrease speed

Potential design remedies...

Defining the operating envelope


All pipelines can carry hydrogen.

...at some pressure.

Detailing a design dilemma

Defining the operating envelope

Know/control your loads. What is the toughness / fatigue-life *demand*.

 H_2 storage pipelines face a significant hurdle.

Pipeline design

Move beyond compliance - see the big picture!

Know/control your loads. What is the toughness / fatigue-life *demand*.

Design – selection of thickness and material.

- Is 'design factor' relevant? Or is design fatigue-dominated
- Maximise or minimize material strength?
- Effect of hydrogen: Early estimates, later confirmation, sensitivity > risk
- Risk of failure leak or break, location, supply criticality

 H_2 storage pipelines face a significant hurdle: *fatigue-critical design*.

............

Material selection / specification

The steel material...

- > The effect of hydrogen relates to fugacity, *unavoidable*
- > Specific compositional factors not well known
- > High hardness / UTS may exacerbate hydrogen vulnerability
- > High-strength materials are still *unprecedented* in practice
- Some stainless and other steel options have significantly different susceptibility)

Pipe specification

The pipe manufacture...

- > Control defect size
- > Tighten or bias geometric tolerances
- > Remove weld toe
- > Decrease residual stress, or
- > Define residual stress in more detail
- > Understand superposition of tolerances
- > Innovate!

Consult Engineer Deliver Realised

Opportunities for more science

Many questions are being addressed and will improve understanding over time...

- > Are external and internal cracks affected the same?
- > Can we forecast embrittlement without testing each material?
- Steel microstructure factors (data, data, data, data...)
- What is the role of restraint / orientation on fracture resistance?
- > *How much* better are high strain rates?

Thank You

